Oxidized alginate hydrogels as niche environments for corneal epithelial cells
نویسندگان
چکیده
Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2-0.8 µm) than unmodified gels (pore diameter: 0.05-0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy.
منابع مشابه
The Secretome of Alginate-Encapsulated Limbal Epithelial Stem Cells Modulates Corneal Epithelial Cell Proliferation
Limbal epithelial stem cells may ameliorate limbal stem cell deficiency through secretion of therapeutic proteins, delivered to the cornea in a controlled manner using hydrogels. In the present study the secretome of alginate-encapsulated limbal epithelial stem cells is investigated. Conditioned medium was generated from limbal epithelial stem cells encapsulated in 1.2% (w/v) calcium alginate g...
متن کاملEnhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel.
AIMS Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for 'on-demand' use. MATERIALS & METHODS In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. RESULTS Cell viability improved as gel internal pore size incr...
متن کاملEvaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin.
Wound dressings that can be formed in situ offer several advantages over the use of preformed dressings such as conformability without wrinkling or fluting in the wound bed, ease of application and improved patient compliance and comfort. Here we describe such an in situ forming hydrogel wound dressing from gelatin, oxidized alginate and borax. Periodate oxidized alginate rapidly cross-links pr...
متن کاملA tunable silk-alginate hydrogel scaffold for stem cell culture and transplantation.
One of the major challenges in regenerative medicine is the ability to recreate the stem cell niche, which is defined by its signaling molecules, the creation of cytokine gradients, and the modulation of matrix stiffness. A wide range of scaffolds has been developed in order to recapitulate the stem cell niche, among them hydrogels. This paper reports the development of a new silk-alginate base...
متن کاملSingle and dual crosslinked oxidized methacrylated alginate/PEG hydrogels for bioadhesive applications.
A degradable, cytocompatible bioadhesive can facilitate surgical procedures and minimize patient pain and post-surgical complications. In this study a bioadhesive hydrogel system based on oxidized methacrylated alginate/8-arm poly(ethylene glycol) amine (OMA/PEG) has been developed, and the bioadhesive characteristics of the crosslinked OMA/PEG hydrogels evaluated. Here we demonstrate that the ...
متن کامل